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Abstract— Guaranteeing consumer safety and regulatory compliance for the cosmetics and personal care market involves 

thoroughly examining product ingredients. Conventional methods proved inadequate in detecting hazardous materials accurately 

and with high efficiency. A new method of detecting oncogenic compounds from cosmetic and personal care products using OCR 

and deep learning is introduced in this paper. The OCR retrieves ingredient information from product labels and packaging and 

then analyzes it through ChemBERTa, a transformer model trained on chemical representations. A specially developed module 

retrieves the SMILES representation of each ingredient extracted via an API-based mechanism. ChemBERTa is compared with the 

usual machine learning classifiers, such as Support Vector Machine (SVM), Random Forest, Decision Trees, Bagging, and XGBoost, 

in this work. ChemBERTa is a better option than traditional classifiers, and it has better accuracy when predicting the 

carcinogenicity of chemical compounds. An interface that is easy-to-use has been deployed using Streamlit that combines 

ChemBERTa and Llama 3.2 to present an informative experience for users. These outcomes show us the promise of deep learning 

in enhancing harmful chemical detection and classification, offering a powerful tool for safer consumer goods. 

 

Index Terms— ChemBERTa, deep learning, oncogenic chemicals, optical character recognition. 

I. INTRODUCTION 

The widespread adoption of packaged consumer goods has 

provided reasons for concerns about oncogenic ingredients 

contained in them, which may lead to cancer. Detection of 

these toxic compounds is therefore crucial to ensure public 

health protection. Conventional methods of chemical analysis 

need large amounts of time and resources, which are 

impractical for mass monitoring. Machine learning (ML) 

models especially ChemBERTa present cancer causing 

chemicals, optical character recognition, chemical 

informatics, Streamlit, and Llama 3.2 as an effective solution, 

automating detection and enhancing efficiency and accuracy. 

Nonetheless, conventional ML models like Random Forest 

and Support Vector Machines are based on pre-defined 

molecular descriptors that might not adequately reflect the 

chemical interaction complexities. Contrarily, transformer-

based deep learning models like ChemBERTa provide a 

sophisticated alternative by using self-attention mechanisms 

to learn complex molecular representations from SMILES 

strings directly. As the dataset does not store SMILES itself, 

we incorporate an API-based method to dynamically retrieve 

the SMILES representations. This work proposes an 

integrated framework consisting of OCR for text retrieval, an 

API-based SMILES retrieval module, and ChemBERTa for 

the classification of oncogenic compounds, presenting a 

scalable and precise solution to chemical safety evaluation. 

II. RELATED WORK 

In Paper [1], the authors explore the creation of carcinogen 

prediction models employing a mongrel neural network 

approach, HNN-Cancer, to identify chemical oncogenes. A 

new SMILES point representation is integrated into the 

model. The RandomForest and Bagging styles, grounded on 

HNN- Cancer, achieved an oncogene delicacy of 74 and an 

AUC of 0.81, establishing the prognostications as largely 

dependable. The HNN-Cancer model itself achieved a good 

micro AUC, accuracy and micro accuracy. In addition, the 

models were created to estimate the pTD50 of chemicals, 

with agreement validation yielding an overall R² of 0.40 by 

comprising the results across styles. Despite encompassing 

different chemical orders and data sources, the models 

successfully prognosticate binary, multiclass, and 

quantitative oncogenicity, aligning with other models in the 

literature that concentrated on lower, more homogenous 

datasets. This paper shows us that HNN-Cancer is suitable for 

prognosticating implicit carcinogenic traits in a wide variety 

of chemicals.  

In Paper [2], prognosticating medicine seeker toxin is 

emphasized as a pivotal aspect of medicine discovery, 

impacting costs, late-stage failures, and medicine recessions. 

While machine literacy(ML) models have limitations, they 

offer a promising approach for the early discovery of 

poisonous composites in medicine discovery. As high-quality 

data scarcity increases and the connection of ML styles 

broadens, their integration into the medicine discovery 

channel will improve. Recent advancements have enhanced 

the understanding of ML model literacy, particularly in 

assessing neural unit activation and crucial features, but 

there's still room for enhancement, especially in combining 
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network pharmacology with ML to address toxin estimation 

challenges. 

Paper [3] focuses on the operation of machine literacy in 

the food industry, relating to the generally used algorithms 

and their separate pros and cons. The study's end is unique in 

its comparison of multiple ML algorithms across colorful 

studies, enabling the identification of top-performing styles. 

The Random Forest Classifier and Random Forest algorithms 

are stressed as the most effective for working problems in the 

food industry. Overall, ML holds significant importance in 

addressing a wide range of issues in the food industry, from 

product to marketing, improving effectiveness, and fostering 

innovation. 

Paper [4] discusses how recent advances in AI algorithm 

design have opened up opportunities to break down problems 

across multiple disciplines. In cheminformatics and medicine 

discovery, machine learning models have greatly served the 

pharmaceutical industry, particularly in relating strong 

relations for new therapeutic targets, aligning with perfect 

drug pretensions.  

Paper [5] reviews the use of machine learning models in 

prognosticating colorful medicine toxin endpoints, including 

oncogenicity, mutagenicity, hepatotoxicity, acute oral toxin, 

and hERG inhibition. Popular algorithms such as SVM, 

KNN, and neural networks are generally used due to their 

established propositions and ease of implementation. Newer 

algorithms, including deep neural networks and ensemble 

styles, have better vaccination accuracy. The development of 

standard datasets for all poisonous endpoints and the 

refinement of molecular features through better point 

selection algorithms are critical for future progress. Graph 

complications, in particular, show promise for developing 

further effective toxin prediction models. 

In Paper [6], the authors emphasize the integration of ML 

algorithms into fungicide toxin prediction, a pivotal step for 

addressing the challenges of fungicide use in husbandry. 

Machine literacy provides experimenters, controllers, and 

stakeholders with important tools for making informed 

opinions about fungicide toxins. k-NN, SVM, CNN, DQA, 

LDA, and Random forest-grounded regression models are 

recommended for more accurate and effective toxin 

prognostications. ML models can also guide sustainable pest 

operation strategies, reducing reliance on dangerous 

fungicides and promoting safer agrarian practices. 

III. PROPOSED WORK 

The architecture consists of four main components: a text 

extraction module based on OCR, a SMILES retrieval 

module, a chemical classification module, and a user 

interface. An image of the product label is processed by the 

OCR module to extract text ingredient lists. After extraction, 

the chemical names are looked up via an external API to get 

their respective SMILES representations. This obviates the 

necessity of SMILES data to be manually collected within the 

dataset, where actual-time and current chemical structures are 

employed for classification. The SMILES representations are 

subsequently fed into ChemBERTa, a transformer deep 

learning model that is trained to examine chemical structures. 

ChemBERTa learns molecular properties from SMILES 

inputs directly, using self-attention mechanisms to identify 

oncogenic compounds. ChemBERTa learns the feature 

representations automatically, unlike conventional machine 

learning models that use predefined descriptors, to enhance 

classification accuracy. 

Streamlit was used to create an easy-to-use interface so that 

non-technical users can interact with the system. The users 

can upload product label images, which are subjected to OCR 

to obtain the names of ingredients. These names are then 

translated into SMILES and subjected to oncogenic property 

analysis. Llama 3.2 is also incorporated as an LLM for 

providing explanations for classification outputs and giving 

insights into possible regulatory issues. 

To clearly understand the end-to-end classification 

process, the following sequence outlines each component of 

the proposed system. 

A. Proposed system 

A. OCR-Based Ingredient Extraction 

Input: Product label image 

Output: Extracted text containing ingredient names 

Tool: Tesseract OCR 

Description: The product image is scanned to identify and 

extract textual ingredient information. 

B. SMILES Retrieval 

Input: Extracted ingredient names 

Output: SMILES strings 

Tool: PubChem REST API 

Description: Each ingredient name is queried through 

PubChem to retrieve the corresponding SMILES 

representation dynamically. 

C. Oncogenicity Classification using ChemBERTa 

Input: SMILES strings 

Output: Oncogenicity prediction (label: 1 = oncogenic, 0 = 

non-oncogenic) 

Model: ChemBERTa Transformer 

Description: The SMILES string is passed to the 

ChemBERTa model, which interprets molecular structure via 

contextual embeddings to classify the compound's 

carcinogenic potential. 

D. User Interface and Output Visualization 

Input: Classified prediction results 

Output: On-screen visual result with model explanation 

Tool: Streamlit + LLaMA 3.2 
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Description: The interface displays each compound's 

classification and uses LLaMA to provide a natural-language 

explanation of why a compound may be oncogenic. 

For the assessment of performance, ChemBERTa is 

contrasted with baseline ML classifiers such as Random 

Forest, Decision Trees, XGBoost, and SVM. The metrics, 

like accuracy, recall, precision, ROC-AUC, and F1-score, are 

used to identify the top-performing model. The results show 

that ChemBERTa considerably outperforms base classifiers 

in the detection of oncogenic compounds. 

Combining OCR, real-time SMILES retrieval, deep 

learning, and a friendly UI makes the system adaptive and 

scalable. Dynamically retrieving chemical structures using 

advanced deep learning methods and enhancing usability via 

a UI makes the proposed framework more efficient and 

accurate in chemical safety assessment 

B. Design 

This model is built to predict whether a chemical 

compound could be cancer-causing by analyzing its 

molecular features. The design process is as follows: 

A. Data Acquisition and Preprocessing 

The dataset titled 'dataset.csv' is imported into the 

environment through the Pandas library. The dataset has 

chemical compounds with their oncogenicity status labeled. 

To guarantee data integrity, basic preprocessing steps are 

executed, which include management of missing values, 

normalization of molecular feature values, and structural 

consistency verification. The SMILES representations of the 

compounds are fetched and inserted later in the code from 

PubChem for precise molecular structure inclusion for 

analysis purposes. As the dataset pertains to molecular 

properties and not textual data, no preprocessing based on 

languages is needed. 

B. Feature Extraction 

The relevant molecular features are extracted using the 

RDKit Python library for prediction, including: 

A. Molecular Weight 

Molecular weight is the total mass of a molecule, found by 

adding up the atomic weights of all the atoms it contains. It's 

usually measured in Daltons.  

 
Fig. 1. Hydrogen Bonding Properties 

B. Number of Hydrogen Acceptors 

Hydrogen acceptors are atoms or groups in a molecule that 

can form hydrogen bonds by accepting hydrogen atoms.  

C. Number of Hydrogen Donors 

Hydrogen donors are parts of a molecule, like hydroxyl or 

amine groups, that can give up hydrogen atoms to form 

hydrogen bonds. 

D. Topological Polar Surface Area (TPSA) 

TPSA is the sum of the surface areas of polar atoms 

(usually oxygen and nitrogen) in a molecule, including their 

attached hydrogens.  

E. MolLogP 

The n-octanol-water partition coefficient shows how a 

chemical splits between water and oil (n-octanol). It helps 

show if the chemical likes water more or oily stuff more. It 

represents the compound's hydrophobicity, where higher 

values indicate greater lipophilicity (fat solubility). 

These features provide significant insights into the 

physicochemical properties of the compounds, which are 

critical in determining their potential oncogenicity. 

C. Target Variable Definition 

The target variable, indicating the oncogenicity status of 

the chemical compounds, is represented by the 'label' column 

in the dataset. A binary encoding is used, with '0' 

representing non-oncogene and '1' representing oncogene. 
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Fig. 2. Training vs Testing Data 

D. Data Splitting 

The train_test_split function from scikit-learn is used to 

break the dataset into two parts: one for training the model 

and the other for testing it. This split makes sure that the 

model is evaluated on unseen data to gauge its generalization 

capabilities. An 80% training and 20% testing split is 

typically implemented. 

E. Algorithms 

Several machine learning models were tested to determine 

the best-performing classifier for predicting oncogenicity: 

A. ChemBERTa 

ChemBERTa is a transformer-based deep-learning model 

designed for chemical informatics. It leverages self-attention 

mechanisms to learn molecular representations directly from 

SMILES strings, eliminating the need for predefined 

molecular descriptors. This improves accuracy in classifying 

the carcinogenicity of chemical compounds. 

B. Random Forest Classifier 

RandomForest is a type of ensemble algorithm that trains 

several decision tree models and merges their outcomes to 

make more accurate and reliable predictions. It improves 

accuracy and reduces overfitting by averaging the predictions 

of many trees. 

C. Support Vector Machine (SVM) 

SVM is a type of supervised learning algorithm used for 

tasks like classification and regression. It works by finding 

the best hyperplane that gives a good separation to the data 

points of different classes in a high-dimensional space. 

D. Decision Trees 

Decision trees utilize a tree-like framework to make 

decisions by analyzing the features of the data. Each internal 

node relates to a particular use, while branches show the 

possible outputs of those decisions. 

E. XGBoost Classifier 

XGBoost is a very scalable and useful implementation of 

gradient boosting, which is an ensemble learning technique. 

It constructs trees in a sequence, with each tree used to fix the 

errors of all the previous trees. 

All models were trained on the extracted molecular 

features. ChemBERTa, unlike standard classifiers, utilized its 

transformer-based model to learn molecular representations 

from SMILES strings directly, without the requirement for 

predefined molecular descriptors. Hyperparameter tuning 

was used to optimize performance, and ChemBERTa proved 

to be better at predicting the carcinogenicity of chemical 

compounds. 

F. Model Evaluation 

All models were evaluated using the testing dataset. To 

make sure the classification model is reliable and performs 

well on new data, a rigorous evaluation process was followed 

using data that was strictly separated during the training and 

testing phases: 

A. Hold-out Test Set 

The dataset was divided in an 80/20 ratio, with 80% 

allocated for training and 20% set aside for testing. The 

testing data remained unseen by the model during training, 

hyperparameter tuning, and cross-validation. 

B. Stratified Sampling 

To preserve the distribution of oncogenic and non-

oncogenic compounds in both training and testing sets, we 

applied stratified splitting using StratifiedShuffleSplit from 

Scikit-learn. This prevents class imbalance and ensures fair 

evaluation metrics across classes. 

 
Fig. 3. Evaluation Formulae 

To evaluate how well our classification model identifies 

oncogenic compounds, we used a confusion matrix and an 

ROC curve. 
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Fig. 4. Confusion Matrix 

The confusion matrix (Figure 4) properly shows us the 

model's accuracy. It has identified 237 carcinogenic 

compounds (true positives) and 44 non-carcinogenic 

compounds (true negatives). It has also misidentified 38 non-

oncogenes as oncogenic (false positives) and misclassified 24 

oncogenes as non-oncogenic (false negatives). 

The ROC curve shows how well the model performs at 

various categorization criteria.  We observe a moderate 

capacity to differentiate between carcinogenic and non-

carcinogenic compounds with an AUC of 0.7223. 

 
Fig. 6. ROC Curve 

More importantly, these results not only show the amount 

of potential our proposed solution has but also the ways in 

which we can refine and fine-tune the model to enhance 

accuracy in further iterations of this project. 

IV. RESULT ANALYSIS 

These are the accuracy scores that we have received for 

each model: 

Table I: Accuracy comparison for each model 

MODEL ACCURACY 

ChemBERTa 0.81 

XGBoost Classifier 0.80 

Random Forest Classifier 0.78 

SVM classifier 0.76 

Decision Tree Classifier 0.73 

ChemBERTa illustrated higher accuracy relative to 

conventional classifiers, such as Random Forest, SVM, and 

Decision Trees. The transformer architecture permits the 

model to learn intricate molecular relationships without 

relying on handcrafted molecular descriptors or traditional 

feature engineering. Instead, ChemBERTa leverages the raw 

SMILES structures, which it tokenizes into meaningful 

substructures through self-attention mechanisms and 

contextual embeddings. This allows the model to capture 

fine-grained molecular patterns and chemical dependencies 

that are often overlooked by conventional algorithms. 

ChemBERTA had better performance over baseline 

machine learning models in forecasting oncogenic 

compounds with 81.92% accuracy, excellent precision of 

86.18%, and a recall of 90.80%. The excellent F1-score of 

88.43% attests to its good capacity in balancing precision and 

recall, demonstrating the power of transformer-based 

contextual embeddings in retrieving molecular feature 

representations important for oncogenicity. 

Conversely, Decision Tree, Random Forest, XGBoost, and 

SVM performed poorly with accuracy levels of 72.89%, 

78.13%, 80.47%, and 76.38%, respectively. These models 

failed to cope with the intricacies of molecular data, 

especially class imbalances and structural variations. To 

obtain these results, we ran the oncogenes.csv dataset on 

Google Colab, fetching SMILES representations through 

PubChem and molecular features through RDKit and 

DeepChem. The ChemBERTA model was trained on these 

features to generate better oncogenicity predictions. 

A key advantage lies in ChemBERTa’s ability to process 

and segment SMILES sequences similarly to how language 

models parse sentences, identifying structural motifs, 

functional groups, and stereochemical contexts within 

molecules. This linguistically similar comprehension of 

chemical representations allows the model to create a rich 

understanding of oncogenic characteristics, increasing its 

predictive ability. As a result, ChemBERTa generalizes more 

effectively across a wide range of chemical compounds, 

minimizing both false positives and false negatives. This 

profound contextual understanding, combined with its end-

to-end learning pipeline, ultimately renders ChemBERTa a 
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better option for classifying the carcinogenic potential of 

molecules. 

 
Fig. 7. Training vs Validation Loss 

The diagram illustrates the Training vs Validation Loss 

over 8 epochs for the ChemBERTa model. The training loss, 

represented by the blue line, shows a steady and significant 

decline across epochs, indicating that the model is effectively 

learning from the training data. Starting from around 0.55, it 

drops sharply and plateaus below 0.30 by the 7th epoch. 

In contrast, the validation loss, represented by the orange 

line, decreases initially but begins to level off after the 3rd 

epoch, stabilizing around 0.44. This trend suggests that while 

the model continues to improve on the training data, its 

generalization performance on unseen data reaches a plateau 

relatively early in training. 

The widening gap between the training and validation loss 

in later epochs may suggest the early signs of overfitting, 

where the model becomes increasingly tailored to the training 

data and less effective on new inputs. However, the relatively 

stable validation loss also indicates that the model maintains 

consistent performance and does not degrade with further 

training. This graph properly shows the learning dynamics of 

the ChemBERTa model during fine-tuning and helps show its 

usefulness in the work of predicting carcinogenicity. 

V. CONCLUSION 

This research developed a ChemBERTA-based system 

designed to detect oncogenic compounds. It cleverly 

combines OCR, SMILES retrieval, and deep learning to 

achieve accurate classification. We improved molecular data 

processing using PubChem for molecular structure retrieval 

and RDKit & DeepChem for feature extraction. The fine-

tuned ChemBERTA model proved better than conventional 

classifiers, with better oncogenicity prediction. 

Our live Python-based user interface facilitates effective 

chemical safety evaluations, minimizing dependence on 

precomputed molecular descriptors and enhancing 

scalability. Upcoming improvements involve enhancing 

OCR accuracy, combining several SMILES databases, and 

tuning ChemBERTA with regulatory data and live 

information on newly discovered carcinogens. 

A. Impact of OCR on Ingredient Extraction 

The OCR module serves a vital purpose in the system by 

extracting data on ingredients from product packaging. The 

accuracy of OCR-based extraction, however, is image-

dependent, font-variance-dependent, and text-encryption-

dependent. Although the implementation at hand possesses 

high recognition precision, misinterpretation of abbreviations 

and chemical names is a problem that is yet to be solved. 

Improved OCR models focused on chemical nomenclature, 

fine-tuned to improve extraction precision, will be 

forthcoming. 

B. SMILES Retrieval and Data Processing Challenges 

The dynamic retrieval of SMILES enhances real-time 

classification by using the latest chemical representations. 

However, missing/incomplete API data can reduce precision 

due to failed lookups or incorrect matches. The API-based 

SMILES retrieval module makes it possible for the system to 

stay updated with current chemical information. There are 

challenges brought about by restrictions such as incomplete 

entries, discrepancies in chemical databases, and API rate 

limits. Overcoming such challenges calls for the use of 

multiple data sources and caching methods to increase the 

reliability of the system. 

C. Usability and Interface Accessibility 

The addition of Streamlit for the UI greatly enhances 

convenience. Users can easily add images or type ingredient 

names to receive real-time oncogenicity analysis. Llama 3.2 

also maximizes user experience by providing elaborate 

explanations of model predictions. Future updates will 

include optimizing the UI design, enhancing the speed of 

response, and incorporating multilingual support to reach a 

global user base. 

This scalable AI-based framework enhances chemical 

safety analysis, facilitating public health and regulation 

compliance through ongoing model accuracy, data merging, 

and accessibility improvements. 
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